Vissza a főoldalra

A központi fűtési rendszerekben bekövetkező rézkorrózió

Bevezetés: A rézből készült vízcsövek háztartási és ipari vízrendszerekben történő alkalmazásának hosszú és sikeres múltja van. Ritka esetekben előfordulhat azonban, hogy a víz tulajdonságai károsan befolyásolják a réz teljesítményét. Az iparágban nagy aggodalmat váltott ki az a jelenség, amit úgy érzékeltek, hogy megnőtt a réztartályokkal kapcsolatos meghibásodások száma. Ezért többek között a rozettakorróziót okolták – ezt a jelenséget az 1980-as években fedezték fel bizonyos vízellátó rendszerekben. A jelen ismertetőben áttekintést adunk erről a helyzetről.

Háttérinformációk
A réz nemesfém; ez azt jelenti, hogy amikor egy elektrolitikus cella részévé válik, akkor a másik fém fogy el, miközben ő maga nem változik. Ez a helyzet általában előfordul a központi fűtési rendszerekben ahol a túl nagy mennyiségű folyasztószer, kombinálva az elégtelen átmosással a réz feloldódásához vezet; és a réz végül kiválik a lágyacél radiátorok felületére, és később annak meghibásodását okozza. A hálózati víz közvetlenül ritkán és más mechanizmussal támadja meg a rezet. A rézkorrózió legfontosabb tényezője az oldott oxigén. Minél nagyobb a hőmérséklet, a víz annál kevesebb oxigént tud oldott állapotban tartani, tehát a hideg víz jobban korrodálja a rezet, mint a forró. Amikor a réz először kerül kapcsolatba a levegőt tartalmazó vízzel, kismértékű, egyenletes általános korrózió megy végbe, általában rézoxid keletkezik, amely védőréteget képez a fém felületén, és megakadályozza a további korróziót. Bizonyos vizekben azonban a réz további lassú feloldódása folytatódik, és az épületgépészeti rendszerek rézszerelvényein zöld foltok keletkeznek. Más esetekben kis helyre koncentrálódó lyukkorrózió következhet be, ami egészen rövid üzemidő után tűszerű lyukak kialakulásához vezet. A háztartási környezetben használt vizek összetétele jelentősen eltérhet egymástól. A folyókból, tavakból vagy víztározókból származó felszíni vizeket a csapadékvíz tartja fenn, amelyben a legfontosabb oldott összetevő a széndioxid. A víz végső összetétele függ a vízgyűjtő terület talajának összetételétől is. Ha a vízgyűjtő terület lényegében oldhatatlan, akkor a víz lágy lesz. Ha jelentős mennyiségű bomló növényzet van a területen, vagy ha a víz tőzegrétegen halad át, akkor savassága megnő. Ezzel ellentétben, a mészkövön áthaladó víz valószínűleg nagyon kemény lesz. Azok a vizek okozzák a legnagyobb sebességű korróziót, amelyek kutakból és forrásokból származnak. Ezek a vizek általában lágyak és oldott széndioxidot tartalmaznak. Az ilyen vizeket “rézoldó” vizeknek nevezik. Itt kevésbé fontos az oldott oxigén szerepe, és akkor a legnagyobb a korróziós sebesség, amikor a vizet felmelegítik. Bár az Európai Unió előírásaiban meghatározott rézkoncentrációt meghaladó vezetékes vizet nem tekintik mérgezőnek, ha a rézkoncentráció meghaladja a 3 mg/l-es határértéket, akkor a víz kezd élvezhetetlenné válni.

Lyukkorrózió
A réz lyukkorrózióját három csoportba oszthatjuk.

1-es típusú lyukkorrózió: Ezt a korróziót eléggé széles, kis mélységű lyukak jellemzik, amelyek általában rézoxidot és rézkloridot tartalmaznak kalcium-karbonát és bázikus réz-karbonát halmok alatt. Ezeket a lyukakat az különbözteti meg a forrasztásnál alkalmazott folyasztószer által okozott lyukaktól, hogy véletlenszerűen fordulnak elő. A hőmérséklet jelentős tényező; a korrózió nagyobb valószínűséggel következik be hideg és langyos vízben, mint forró vízben. Leggyakrabban fúrt kutakból származó vizekben, vagy flokkulálószerekkel kezelt vízben fordul elő. A víz teljes keménysége gyakran meghaladja a 100 mg/l-t, és általában nagyobb, mint 150 mg/l, de korrózió lágyabb vizekben is előfordulhat. Az a vélemény alakult ki, hogy felszínről származó vizekben a nagyon kis mennyiségben jelen levő szerves anyagok, pl. polifenolok gátolják a korróziónak ezt a fajtáját. Az 1-es típusú lyukkorróziót gátolni (inhibeálni) kell; ezt a korróziót régebben a csőhúzási folyamat után a csőben visszamaradó szénréteg okozta. A koptató hatású tisztítási módszerek modern alkalmazása minimálissá csökkentette a problémát, és általános az egyetértés abban, hogy a lyukkorrózió kialakulásában a víz agresszivitása jelenti a központi tényezőt. Például az oldott oxigén és az oldott széndioxid nyilvánvalóan részt vesz a lyukképződési folyamatban és a lyukkorróziót okozó vizek általában kloridot is tartalmaznak.

2-es típusú lyukkorrózió: Ezt a korróziót kis keresztmetszetű, keskeny/mély lyukak jellemzik, amelyek nagyon kemény réz-oxiddal vannak tele kis halmok alatt; ezek a halmok is rézoxidból vannak, de bázikus rézszulfátot is tartalmaznak. Ez a fajta korrózió lágy vizekben, 60 °C fölötti hőmérsékleten következik be és úgy tűnik, hogy lassabban megy végbe, mint az 1-es típusú lyukkorrózió. A bikarbonát/szulfát arány gyakran 1-nél kisebb, a pH pedig 7,6-nél alacsonyabb. Az az általános vélemény, hogy a mangán jelenléte hozzájárul az ilyen korrózió kialakulásához.

3-as típusú lyukkorrózió: Ezt a korróziót egy kéreg alatt levő szivacsszerű lyukak jellemzik. Ez a korróziótípus ma is komoly kutatások tárgya.

Kiválasztott anyagminőség
Kifejtették azt a véleményt, hogy azok a vizek, amelyek néha a réz vízelosztó hálózat gyors korróziójához vezethetnek, ugyanolyan korrozívak lehetnek a hengeres réztartályok esetében is. Alaposabb vizsgálat után azonban kiderül, hogy a nagyon kis számú meghibásodás látszólag nem ad okot arra, hogy a víz jellege miatt robosztusabb berendezésekre legyen szükség. Valószínűbb, hogy azért használnak nagyobb igénybevételre tervezett tartályokat, mert a fő városközpontokban levő sok magas épületben nagy víznyomásra van szükség.

Alumínium anódok
Egy réztartály vagy hengeres tartály élettartama annak az oxidrétegnek a jellegétől függ, amely a fém felületén kialakul annak első üzembehelyezésekor. A réz felületén általában egy olyan vékony oxidréteg alakul ki, amely akármeddig megvédi a felületet a korróziótól, de olyan vizekben, ahol lyukkorrózió bekövetkezhet, néha egy kissé eltérő jellegű réteg alakul ki, amely később leszakad és lehetővé teszi a lyukkorróziót. Ugyanúgy, mint a lágyacél, az alumínium is kevésbé nemes fém, mint a réz, és a hatvanas évek végén azt találták, hogy egy alumínium anód behelyezése a hengeres réztartályba hatékonyan megakadályozza az 1-es típusú lyukkorróziót. Az anód funkciója az, hogy az anód korrodálódjon elsőnek, amíg egyenletesen vastag oxidréteg épül fel a réz felületén. Az ilyen védőanódok alkalmazását beépítették a brit szabványba és alkalmazása rövidesen általánossá válik. Azokra a vizekre irányuló kutatások, amelyekről ismert, hogy elősegítik az 1-es típusú lyukkorróziót, azt mutatták, hogy a legjobb eredmények akkor érhetők el, amikor a réz és az alumínium érintkezési pontja a víztől jól elszigetelt helyen van; ez megakadályozza a korai korróziót azon a ponton, ahol a legerősebb az elektrokémiai áram. Az anód széle és a tartály közötti optimális távolságot is tartani kell. A legtöbb esetben csak arra volt szükség, hogy az anód ép maradjon kb. 3 hónapig ahhoz, hogy betöltse feladatát. A problémák, két módon jelennek meg, amelyek közös okra vezethetők vissza. A rossz minőségű szigetelés a csatlakozási pontnál az anód korai leválását eredményezi; ilyenkor az anód leesik a tartály fenekére, ahol jelentős mennyiségű, oxidból álló iszap felhalmozódását eredményezi. Normál esetben ez az oxidtörmelék az anód széleinél keletkezik, és azt a tartályon átáramló víz magával viszi. Ahol azonban az iszap keletkezik, a lerakódás alatt korrózió indul meg a hengeres tartály alján az oxigéntelítettségben mutatkozó különbség miatt. Ez gyors meghibásodáshoz vezet. Ha a meghibásodás nem ilyen módon következik be, akkor a megfelelő helyzetben levő anód hiánya lehetővé teszi a korróziót azzal a mechanizmussal, amelynek megakadályozására az anódot eredetileg beépítették.

Rozetta korrózió
A jelenséget azért nevezték el így, mert a korrodált réz felületén jellegzetes, virágsziromra emlékeztető bemaródások jelennek meg. Kétségtelen, hogy számos esetben nagyon eltúlozzák a rozettakorróziónak tulajdonított korróziót. A legtöbb esetben, amikor meghibásodnak, a tartályokat leselejtezik anélkül, hogy megvizsgálnák belső felületüket. Csak olyan eseteket jelentettek a rozetta korrózióra, amelyek a hengeres tartályokkal voltak kapcsolatosak. A kutatás tovább folyik, de ismert, hogy olyan tényezők járulnak hozzá a bekövetkezéséhez, mint a nitrát és az alumínium anód jelenléte. Arra is vannak bizonyítékok, hogy a rozettakorrózió gyakoribb, ha az alumínium anóddal ellátott réztartályt hosszú ideig állni hagyják vízzel teli állapotban, mielőtt használatba vennék. Ilyen esetekben a rézedény korróziója a tartály alján, az anód alatti területen következik be. Az ország bizonyos részein a nitrát koncentrációja jelentősen megemelkedett az elmúlt néhány évben. Ennek valószínűleg az az oka, hogy a nitrát tartalmú műtrágyák beszivárogtak a víztároló rétegekbe, amelyekből a vezetékes víz, vagy annak egy része származik. Továbbra sem bizonyított azonban, hogy ez lenne a legfontosabb tényező, amely felelős a rozettakorrózió látszólagos növekedéséért.

Jövőbeli teendők
A tartályok áttervezhetők úgy, hogy csökkenjenek azok a területek, ahol kicsi a hidegebb (30 °C alatti hőmérsékletű) víz turbulenciája, ami néha a vízben levő sók és más anyagok felhalmozódásához vezet a tartály alján. Ez segíthet megakadályozni számos korai meghibásodást, amelyek az 1-es típusú lyukkorrózió, vagy – az alumínium anód elvesztését követően – a rozettakorrózió miatt következnek be. A rendszereket specifikáló és az azokat megépítő szakemberek saját maguk is tehetnek ésszerű lépéseket úgy, hogy csak a feladathoz megfelelően méretezett egységeket építenek be, így megoldható, hogy ne tartózkodjon hosszú ideig nagy térfogatú, fel nem használt víz a tartályban. Az ország olyan régióiban, ahol a lyukkorrózió miatti meghibásodás ismert probléma, a végfelhasználókat arra kell ösztönözni, hogy rendszeresen engedjék le teljesen tartályaikat, hogy megakadályozzák a fent leírt üledékfelhalmozódást; ez segít mind az 1-es típusú, mind pedig a rozetta típusú korrózió csökkentésében. Ez a feltöltött, de nem használt tartályokra is vonatkozik, különösen azokra, amelyek új, de még nem lakott épületekben találhatók.

This site uses cookies to enhance your experience. By continuing to the site you accept their use. More info in our cookies policy.     ACCEPT
<